Your instruction may be crisp, but not clear to me!
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Abstract— The number of robots deployed in our daily
surroundings is ever-increasing. Even in the industrial set-
up, the use of coworker robots is increasing rapidly. These
cohabitant robots perform various tasks as instructed by co-
located human beings. Thus, a natural interaction mechanism
plays a big role in the usability and acceptability of the robot,
especially by a non-expert user. The recent development in
natural language processing (NLP) has paved the way for
chatbots to generate an automatic response for users’ query. A
robot can be equipped with such a dialogue system. However,
the goal of human-robot interaction is not focused on generating
a response to queries, but it often involves performing some
tasks in the physical world. Thus, a system is required that
can detect user intended task from the natural instruction
along with the set of pre- and post-conditions. In this work,
we develop a dialogue engine for a robot that can classify and
map a task instruction to the robot’s capability. If there is some
ambiguity in the instructions or some required information is
missing, which is often the case in natural conversation, it asks
an appropriate question(s) to resolve it. The goal is to generate
minimal and pin-pointed queries for the user to resolve an
ambiguity. We evaluate our system for a telepresence scenario
where a remote user instructs the robot for various tasks. Our
study based on 12 individuals shows that the proposed dialogue
strategy can help a novice user to effectively interact with a
robot, leading to satisfactory user experience.

I. INTRODUCTION

Factories are using various robots as part of their work-
force for decades. The use is mainly restricted to a specific
area for predefined, repetitive jobs. Recently, we see a large
number of coworker robots are deployed in industrial setup
along with robots in our daily surrounding like home, office,
restaurant, airport, shopping centers, etc [8], [18]. Often these
cohabitant robots have to interact with human beings. Thus,
a natural conversation mechanism is a necessity for these
robots for better usability and acceptability by the users.

In recent times, the deployment of a chatbot by various
businesses and organizations has increased rapidly. They are
usually trained with a vast amount of domain knowledge and
they perform query answering from this structured knowl-
edge. They are equipped with customized natural language
processing (NLP) tool-sets that help to extract the input data
from a conversation. A robot deployed in our surrounding
can utilize such a chatbot to derive the human intention
and set a goal for itself. As the functionality of a robot is
not limited for question-answering only, but to perform a
certain type of tasks within its capability, the goal setting
for self often involves action planning. If a robot accepts
tasks through natural instructions, it needs to identify the
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Fig. 1: Overview of robotic agent for task identification and
execution through natural language dialogue.
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intended task and generate a plan to perform the task.
Unlike constraint factory floors, where the robot performs
a predefined sequence of tasks, run-time task identification
and planning is required.

In this work, we develop a dialogue engine for robots and
an overview is shown in Fig. [T} The dialogue engine in its
full capacity would be able to capture human intended tasks
through audio command and gesture, engage in dialogue
(only when it is necessary) if there is ambiguity/missing
information in natural interaction, and generate an executable
plan to complete the task. Scope of this work is limited
to text-based (natural language) input-output. However, any
audio-to-text and text-to-audio system can be coupled with
this for vocal conversation.

Most of the existing chatbots are trained with query-
response pairs and a given query is classified to such a
predefined pair. A robotic task instruction requires a set
of pre- and post-conditions to be satisfied, which varies
significantly with the number of conditions and task context.
As a result, the predominant approach of classifying a task
instruction to a predefined task-action pair is not sufficient.
Also, the ambiguity present in natural conversation cannot
be handled using a predefined query. Thus, we develop
a dialogue strategy to generate a context-specific query,
should there be any ambiguity and/or missing information
in the conversation. Our dialogue strategy allows a human
to control the dialogue flow by specifying such an intention.
Since training data for robotic tasks instructions are scarce
for most application domains, we use a set of probabilistic
classifiers that does not require a large volume of training
data.

Our major contributions are two-fold. Firstly, we develop a
mixed-initiative dialogue engine for a robot that can identify
tasks along with all the parameters from a natural conver-
sation and generate a viable plan to execute it. Secondly,
we develop a dialogue strategy that resolves ambiguity and
failure in task understanding with a minimal query.



II. RELATED WORK

Advancements in deep learning and reinforcement learning
have empowered many complex conversational systems [7],
for both domain-specific, task-oriented dialogue [17] and
general-purpose dialogue for social conversation [25]. Social
dialogue agents essentially learn a mapping between an input
and its response. Whereas, task-oriented dialogue agents
typically serve a user’s information need by taking a natural
language utterance as input and by performing a query in a
knowledge base or the web using the predicted intent and
finally generating the response from the result [7], [20].
In contrast, a robotic dialogue agent needs to understand
the semantics of an utterance, by parsing it to a structured
and logical form. In the robotics domain, utterances are
often short, incomplete and ambiguous that lead to multi-
turn dialogues.

The task-oriented dialogue agents often engage in multi-
turn dialogues to extract unspecified arguments [17]. How-
ever, such end-to-end conversational systems that allow a
human to naturally interact with a robot for specifying
tasks are rare. Although there are approaches that train
a deep neural network to learn end-to-end task-oriented
dialogues [7], it is difficult to collect such training data for
robotic task disambiguation and information elicitation. Also,
significant efforts are required to adopt such models to work
on robots with different manipulation capabilities, deployed
in different environments. In the robotics domain, dialogue
strategies to elicit missing information has been proposed
in [16], [24]. However, the proposed dialogue agents use
restrictive dialogue policies that only accept answers that
are expected in a context and does not allow the user to
change the dialogue flow. In contrast, we present a mixed-
initiative dialogue strategy, where the flow of the dialogue
can be decided by both the agent and the human.

Instructing a robot through natural language has been
widely investigated, but the interactions are often unidirec-
tional and limited to commands [1], [4], [13], [14], [22].
Many proposed works generate execution plans from natu-
ral language instruction, by following a parsing-reasoning-
planning pipeline [1], [13], [11], but the role of dialogue in
such a pipeline is not well investigated. Following a similar
approach for task understanding, we present a dialogue agent
that handles prediction failures and incomplete instructions.

Dialogue agents for task execution by robots are mostly
focused on eliciting missing information [16], [24], knowl-
edge grounding [21], [23] and interactive task learning [5],
[6]. To the best of our knowledge, dialogue to resolve
task prediction failures due to ambiguity and novelty in the
instruction is not well investigated. Task prediction failures
have been tackled by word similarity measures [12] and
environment-specific data [15], but the role of dialogue is
neglected. Although a similar natural language grounding
system for task disambiguation has been proposed in [19],
we present a novel dialogue strategy for this problem that
enables learning from past interactions. This strategy leads
to better instruction interpretation, using the help from a

human and by asking minimal questions that are also easily
understood. Our proposed system can also guide the user
to interact effectively by providing appropriate responses
against predicted user intent.

ITII. SYSTEM OVERVIEW

In this section, we briefly introduce the components of
“Task Conversational Agent for Robots (TCAR)” and its
design philosophy. Although TCAR is primarily a dialogue
agent, it includes components that are tightly coupled with
a robot’s perception, cognition, and actuation sub-systems.
TCAR consists of four building blocks — (i) a dialogue state
manager (DSM) that handles the flow of a mixed-initiate
dialogue, (ii) a task interpreter that identifies tasks, along
with their relevant parameters from natural language instruc-
tions, (iii) a knowledge base (KB) that stores a world model,
including a model of the robot and (iv) a plan generator
that ensures a valid sequence of actions are generated for an
identified task.

A. Dialogue state manager

The role of DSM is to maintain and redirect the dialogue
flow to different dialogue strategies that are designed for
specific contexts. It includes a high-level intent classifier that
captures the intention of the user at every point of interaction.
Based on the user’s intent and the context, DSM forwards
the dialogue to the designated states. The intent classifier and
the dialogue strategies are described in Section

B. Task interpreter

Tasks are given to the robot as natural language instruc-
tions, which are often ambiguous and incomplete. Under-
standing the meaning of such instruction involves determin-
ing the type of the task and the corresponding arguments
specified in the instruction. However, there can be numerous
kind of utterances that may not be task instruction, e.g., a
simple statement, a question, etc. So, TCAR uses a high-level
intent classifier to classify the spoken phrase.

After an utterance is classified as a task instruction by the
high-level intent classifier, the type of the task conveyed by
the instruction and the arguments mentioned in it, which are
required for the physical execution of the task, are predicted.
This understanding is enabled by both the linguistic structure
of the instruction and the context inferred from the world
model. The task and argument types are modeled using the
theory of frame semantics [2]. It models a task as a frame
that has an unambiguous goal, and the arguments or the
parameters as frame elements. We use conditional random
field (CRF) models for this sequence prediction.

For a given utterance S as a sequence of words, S =
{wi,wa,...,w,}, we define a model that predicts a label
t; for each w; € S. We do labeling of task type and the
associated parameters in two sequential steps. At the first
step, task type is estimated using a probability distribution
over the set 77 =T U O. Here, T is the set of known task
types and O contains a single label o for the words that do
not express a task. To predict ¢;, we use both lexical and



grammatical features of the word and its contextual words.
The features include lemma, parts of speech and syntactic
relations. Specifically, the verbs that represent a frame are
discriminated from the other words using these features. The
features are extracted using a general-purpose NLP engine,
Spacyﬂ The CRF model for task type prediction estimates
the following conditional probability distribution.

n k
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where o is a normalization factor, f; is the jth feature
function, A; is the weight of the jth feature function, and k
is the number of such feature functions. During training, the
weights of the feature functions are learned using a stochastic
gradient descent algorithm. During inference, the maximum
likelihood of ¢; is used to label the words,

T, = argmax P(T"|S).
T/

Similarly, the CRF model for argument extraction esti-
mates the following conditional probability distribution.

n -1
P(a1:n|w1:n) = aexp { Z ( )‘jfj(Saiv ai—lyai)
=0

1=0

+XA 9(S>i7Tp))}a

where along with [ — 1 feature functions, the feature function
g with the weight )\; is used to associate a task type label
with each word. The function g is defined as the following,

¢, ift;eT
tj, elseift; ¢ T and j > i.

g(Sv Tpvi) = {

The extracted labels a;., of the arguments are grounded to
known objects using the knowledge base.

C. Knowledge base

The knowledge base (KB) stores the model of the envi-
ronment where the robot is operating and a model of the
capabilities of the robot in a formal representation so that
reasoning can be performed over the knowledge. The KB has
the provision of updating the knowledge with the perceived
changes in the environment. The KB also provides the task
context that is taken into consideration while generating the
planning problem for the planner. This task context is found
by updating the KB after actions are performed by the robot
by reasoning over the post-conditions of the action sequence
with the world model.

D. Plan generator

To execute a task, a robot often needs to perform a
sequence of sub-tasks that are supported by its manipulation
capabilities. A plan is a sequence of such sub-tasks that
satisfies the intended goal of the task. For example, to
perform a bringing task, the robot has to perform a sequence

Thttps://spacy.io/
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Fig. 2: Overview of the dialogue flow in TCAR.

of movement, picking and placing actions and this sequence
is governed by the world state. A task specified in an
instruction can be assumed to change a hypothetical state
of the world (initial state) to an expected state (goal state).
The plan generator uses templates to encode both the initial
and goal conditions that are stored as a conjunction of
fluents expressed in first-order logic. The planning problem
is generated in the PDDL formal language [9]. First, the
appropriate template is selected using the predicted task type
and then grounding the variables in the templates using the
arguments mentioned in the instruction. The arguments are
validated with the current state of the world model given by
KB. For the instructions with multiple tasks, the tasks are
assumed to be planned and executed in serial order, preserv-
ing the context across the tasks. For such instructions with
multiple tasks, arguments are often referred by pronouns. For
example, in the instruction: “Take a pen and bring it to me”,
the argument pen in the taking task is referred by the pronoun
it in the next bringing task. We use a co-reference resolverE]
to replace such anaphoric references. After generating the
planning problem, we use the FF planner [10] to generate
the required plan.

IV. DIALOGUE STRATEGY

The overall flow of dialogue is modeled as a state machine
shown in Fig. [2] The state machine consists of several
dialogue strategies that are designed to have a concise and
meaningful conversation with a human user. We present
the strategies as a guideline of what needs to be asked in
a particular situation and how it should be asked. In the
following, we present the primary components of this state
machine.

Zhttps://github.com/huggingface/neuralcoref



TABLE I: High-level intents recognized by TCAR.

Intent
welcome_greetings
question_on_self
wh_general

instruction
question_own_location
bye_greetings

Description

General greetings of a welcoming note
Questions about the robot’s capabilities
Questions unrelated to the robot

Instruction to perform a task

Questions about the robot’s current location
Statements denoting the user wants to leave

A. Intent classification

TCAR uses an intent classifier for the probabilistic pre-
diction of a user’s intention, given an utterance. We model
the intent predication as a text classification problem. The
intent classifier takes the training data D as a set of the
pairs of an utterance X; and the corresponding intent Y;,
ie D = {x;,y;},. We use a logistic regression classifier,
trained with a stochastic gradient descent algorithm and word
n-grams as the features for the prediction. During inference,
given an utterance z, its intent y is found as,

y = argmax P(y;|z).
yi €D

The intents recognized by TCAR are shown in Table
Initially, the user takes the initiative to start the dialogue,
which is shown as the Intent classification (SO) state. If the
intent is recognized as a task instruction, the system goes
ahead to the Task type prediction (SI) state. For the intent
question_own_location, the KB is consulted for the robot’s
current location and a response is generated. For the intent
question_on_self, the manipulation capabilities of the robot
are listed. For a wh_general intent, TCAR responds that it
is incapable of answering such questions. For the greeting
intents, a response is selected randomly from a set of pre-
defined responses.

If a task is predicted with high confidence, then TCAR
goes ahead to the Argument prediction (S2) state, otherwise
TCAR takes the initiative to start a dialogue and the dialogue
strategy for the same is described in Section If the
extracted arguments are valid and fulfill the requirement
for the planing problem generation template, it goes to the
Plan and execute (S3) state. Otherwise, TCAR engages in
a dialogue to elicit the missing information, as explained in
Section [V=-C}

The user can change the goal of the dialogue at any
state by expressing his/her intention to do so. For example,
when TCAR is asking to confirm its task type prediction,
the human can give a new task or modify the arguments
instead of giving an answer. The change in the initiative
is determined by the intent classifier and the corresponding
state transition in the state machine.

B. Task disambiguation by dialogue

The task type prediction model is a probabilistic classifier
that is subject to uncertainty. Typically, task identification
models are trained with the features around the verb present
in the instruction and with a limited set of such training
examples [4], [14], [19]. During prediction, the models can
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Fig. 3: Dialogue strategy to resolve task prediction failure.

encounter novel verbs and ambiguous sentence structures
that may lead to mispredictions. Also, the features are
extracted using probabilistic classifiers and their uncertainties
are propagated to the task prediction model. It is natural to
confirm such predictions from the human if the confidence of
the prediction is low [24]. TCAR asks the user to validate a
low confidence prediction before forwarding to the argument
prediction state. We use the likelihood of the task type
estimated by the task prediction model as the confidence. If
the prediction is confirmed by the user then TCAR proceeds
to the argument prediction state. If the prediction is stated
to be incorrect, then the intended task type is determined by
engaging in a dialogue. Also, it has to be determined whether
the robot is actually capable of performing the task, as the
human may not be aware of the same. Fig. [3] depicts this
dialogue strategy.

However, directly asking the user to specify the task type,
as proposed in [24] is impractical, because the user may not
know the task types known to the robot. It is also difficult
for a novice user to infer the convention that is used to
define the task types. Generally, in such situations, it is better
to provide the user with specific choices [20]. We use a
dialogue strategy to ask the user about alternate task types,
also making sure that the questions are easily understood.
The strategy asks the user about the similarity of the given
instruction with the known set of tasks. The user is able to
give a binary yes/no answer to these questions so that the
answer also becomes unambiguous for TCAR.

In a practical scenario, a robot needs to understand tens
of task types. If the dialogue suggests them one by one, the
human experience will degrade badly. So the robot needs to
suggest alternative task types in the order of their likelihood
of being the true task type. We propose a method to estimate
the likelihoods by exploiting the training data given to
the robot, which can also include the conversation history
experienced by the robot. Specifically, we hypothesize that
if the task type can not be determined from the features, the
probable arguments present in the instruction can provide
evidence for the task type. In this case, the argument types
present in the instruction are predicted without considering
the task type associated with the words. Specifically, given a



sentence S, we estimate a conditional probability distribution
over the set of task types T, i.e., P(T'|S). Then the task types
are ranked using their probabilities and the dialogue strategy
asks the questions using the ranked list. After asking about
all the task types in the list, TCAR determines that the robot
is unable to perform the task. If the number of task types is
very large, then a probabilistic threshold can also be used to
express the incapability earlier. The model for predicting the
argument types is also realized as a CRF that estimates the
following.

n l
Py w1) = cvexp { SN £l a;>},
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where a} is the predicted label of an argument type, for the
word w;. This model uses the same features as the argument
extraction model, except the task type association feature
function.

The predicted labels af.,, are used to determine the set of
argument types A’ present in S. Given the training data D,
as m instances of annotated instructions D = {I;};" ,, we
extract the set AkD for each instance I;. Then the number
times a task type ¢t € T satisfies the condition A’ C AP,
is counted for all the m annotation instances. The counts
are normalized using a softmax function to estimate the
probability distribution P(T|S). To enable learning from
past interactions, D also includes the annotated history of
the instructions successfully planned by TCAR. Furthermore,
during the normalization, the counts from past interactions
can be given more weight to give preference to user-specific
vocabulary over the offline training data.

While asking about the task type prediction and the
alternatives, TCAR needs to convey the meaning of the task
type to the user through the question. The question needs
to be carefully crafted, so that a user who is not aware
of the terminologies used by the robot, can understand the
question. As an example, consider the ambiguous instruction:
“Put on the display”. This instruction is predicted with low
confidence as a task of changing the state of a device because
of the ambiguous verb Put, but it could also mean a placing
task. However, a question like “Do you want me to do a
state change task?” is less likely to be understood properly.
Instead, we use templates to frame the questions that preserve
the similarity of the question with the original instruction.
Examples of the templates are shown in Table [}

The underlined words shown in the table denote unfilled
argument slots. The slots are filled by extracting the argu-
ments from the instruction using the task type for which
the confirmation is being asked. For the same example,
TCAR frames the question “Do you want me to turn on the
display?”, which is better understood. If a slot is unfilled,
i.e.,, not mentioned in the instruction, a generic phrase
denoting the argument type is used to fill the argument slot.
For example, to ask if the instruction conveys a placing task,
the question is framed as “Do you want me to put the display
in somewhere?”.

TABLE II: Question templates for task disambiguation.

Task type Template

Motion Should I move to location?

Taking Do you want me to pick up object?

Bringing Should I bring object to location?

Change-state | Do you want me to turn intended-state the device?
Placing Do you want me to put the object in location?

S7: Known argument, S2

All arguments
understood?
No

Fig. 4: Dialogue to validate arguments before planning.

C. Argument elicitation

Before generating the planning problem, TCAR validates
the required arguments for the task. This list of arguments
depends upon the task template and the planning context
given by KB. For example, if the robot is instructed to
bring an object to another location, the source location of
the object needs to be specified if that information is neither
present in the instruction, nor stored in KB. But if the robot
is already holding the object, for the same instruction, the
source location need not be mentioned. It may also happen
that the argument itself can be ambiguous. For example, if
there are multiple doors in the room, for an instruction to go
to a door, the robot asks for disambiguation by showing the
choices. Fig. 4| shows the dialogue strategy for eliciting the
argument information.

For all the arguments required for the given task, TCAR
checks whether they are mentioned in the instruction using
the argument prediction model. If an argument is mentioned,
i.e., the type of argument is known but the value is not stored
in KB, TCAR asks to provide a valid value for the argument.
Otherwise, TCAR checks if the argument can be populated
using the world model from KB. If not so, TCAR asks the
user to specify the missing information. Again, the questions
are generated using templates and some of the question
templates are shown in Table For an argument that is
shared across multiple task types, a generic template is used
that uses an appropriate synonym of the task to generate the
question. For the unique arguments (used only in a certain
task type), we use predefined questions.



TABLE III: Question templates to elicit missing arguments.

Task type
Taking, Bringing
Bringing, Placing
Change-state

Missing argument
Source location
Goal location
Device

Template

From where do I Verb it?
Where should I Verb it?
Which device do I turn
on/off?

Where do I search for it?

Area to search

Searching

S4, S5, S7: Task instruction

Merge
arguments
S2
All arguments
understood?

Fig. 5: Ensuring dialogue continuity using the context set by
the previous task.

Explained in
Fig. 4

D. Dialogue Session continuation

We have equipped TCAR with the capability to maintain
dialogue continuity even if unexpected answers are given.
TCAR expects binary answers while asking to confirm a
task type prediction in the states S4 and S5 shown in Fig.
and Fig. 3] respectively. But instead of a binary answer, the
user may rephrase the instruction, possibly with pronoun
references of the arguments. As an example, for the question
“Do you want me to turn on the display?”, the user may
give the answer as a task: “Turn it on”, also referring to
the noun display by the pronoun it. Similarly, when TCAR
asks to provide a missing argument in the state S7 (Fig. [),
instead of answering in a word or phrase, the answer may
re-iterate the original instruction with the required argument.
For example, in response to the question “From where do I
take it?”, the answer can be given as “take it from table”.
Moreover, the user may give a new task or may simply
intend to end the conversation. Our dialogue strategy can
also resolve such unexpected answers using the notion of
session continuation. We define a session as a unit of the
conversation that starts from an utterance given by the human
and ends with either a task execution, failure to understand an
utterance or a bye_greetings intent. In the same session, the
human is expected to talk about a single task, but the session
can be preempted by providing a new task. The dialogue
strategy is shown in Fig. [}

We use the same intent classifier as discussed earlier to
determine the intent conveyed by the answer provided in
the states S4, S5, and S7. If the intent is classified to be an
instruction, then the task type is predicted. If the task type
is predicted with high confidence and is of the same type as
the one in the current session, TCAR goes to the argument
validation state, adding the new arguments (if any) to the
task and continues the strategy described in Section

TABLE IV: Classification report of the CRF models for the
HuRIc dataset.

CRF model Precision | Recall F1 Score
Task type prediction 0.93 0.90 0.91
Argument extraction 0.93 0.92 0.92
Argument prediction without | 0.75 0.75 0.72
task type information

For a low confidence prediction, the dialogue is continued
using the strategy described in Section While merging
the arguments, we use a co-reference resolver to replace
the pronoun references with the arguments mentioned in the
original instruction.

V. EVALUATION

In this section, we present the results of an automated
quantitative evaluation of TCAR using a dataset and a
subjective evaluation by human users.

A. Quantitative evaluation

We train the CRF models for instruction understanding
using the HuRlIc dataset presented in [3]. From the dataset,
we sample 481 instructions annotated with the tasks and the
mentioned arguments after removing the task types that have
very few (less than 5) samples. This results in a total of 9
task types and 11 argument types. We split the dataset into
75% training set and 25% test set and report the accuracy
of the models for the test set in Table Though the task
type prediction and the argument extraction models performs
well, the accuracy of argument type prediction, without using
the task type association feature is not high. However, the
moderate inaccuracy of this model does not hinder the end
result as the dialogue strategy for task disambiguation does
not use the output of this model directly.

We have evaluated the pipeline of plan generation from
instructions using the Rockin@Homé]| dataset that has been
collected from several competitions for assessing instruction
understanding capabilities by a domestic service robot. In our
evaluation, task planning is successful when the task type and
arguments are correctly predicted and the generated planning
problem results in a valid plan by the FF planner [10]. We
compare our system against two baselines. The Baseline-ND
system does not use any dialogue to interpret a task. The
Baseline-AD system uses dialogue for argument elicitation,
but only for the arguments not mentioned in the instruction.
During the evaluation, TCAR uses argument elicitation di-
alogue with the provision of populating missing arguments
using the KB along with co-reference resolution. The human
responses are automated by a simulation that provides the
correct missing argument only if it is required and can’t
be inferred. The responses provided in this simulation are
always direct answers, in a word or phrase. The same task
identification and argument extraction models are used in
TCAR and the baselines.

We report the plan generation accuracy for the dataset in
Table The task identification model is able to identify

3http://rockinrobotchallenge.eu/home.php



TABLE V: Plan generation results for the Rockin@Home
dataset.

System

No dialogue (Baseline-ND)

Naive argument elicitation (Baseline-AD)
TCAR

Plan generated
183 (42.5%)
334 (77.5%)
392 (90.9%)

420 (95.6%) out of the 431 tasks specified in 385 instruc-
tions, containing 1.12 tasks per instruction. The Baseline-
ND system is able to generate a valid plan for only 42.5%
tasks because many of the instructions were incomplete.
The Baseline-AD generates plans for 75.4% of the tasks,
outperforming Baseline-AD by a large margin, but it fails
for instructions with multiple dependent tasks that requires
inferring arguments from the task context. TCAR generates
90.9% of the tasks that match closely with the accuracy
of the task identification model. For some of the correctly
identified tasks, plan generation fails due to argument parsing
failures. We can not evaluate the task disambiguation dia-
logue strategy for the incorrectly identified tasks because of
the similarities in the task types between the Rockin@Home
and the HuRIc dataset. Instead, we present the results of a
user study to evaluate this in the following sub-section.

B. Subjective evaluation

We conduct a study with human participants to evaluate
TCAR in a telepresence meeting scenario, where a robot
acts as an avatar of the attendee. The goal of the study
is to infer how people would interact with TCAR given
that dialogue systems are generally perceived as question-
answering agents and its application for instructing robots
is not well known to the public. We also hypothesize
that there is a high expectation of interaction quality from
conversational systems because of the popular usage of
voice-based personal assistants and people would expect
similar responding capabilities from TCAR even though its
applicability is very different. The second goal is to assess
TCAR’s language understanding capability for novel utter-
ances and see whether the dialogue strategies we described
in Section can guide the participants to successful task
executions.

For the experimentation, we develope a graphical interface
that allows a participant to type in the utterances along
with a window showing the interaction and another window
showing animations in a simple simulated environment as the
robot executes a task. From our experiments, 12 participants
(5 female, 7 male) with ages in between 25-48 (mean(m)=32,
standard deviation(sd)=8.1) volunteered for the study. All
the volunteers have a bachelors degree and higher education
except one person who has a high-school education. None
of them is a native English speaker, but well conversant in
English. No volunteers have any prior experience of working
in robotics or natural language processing. On a scale of 1
to 10, the average knowledge of how a robot works is about
4.91 (based on their rating).

To validate our hypothesis, we neither explicitly reveal
TCAR’s language understanding nor manipulation capabili-

ties. Instead, the participants are stated the following: “A mo-
bile telepresence robot can attend a meeting on your behalyf.
Interact with the robot using the chat window, imagining you
are remotely using it.”. The participants are asked to interact
with the system for a maximum of 10 minutes. We partition
the total interaction of each user into sessions. A session
starts with a greeting from TCAR, and ends when any of
the following conditions are met — (i) a task is executed, (ii)
TCAR predicts a bye_greetings intent, (iii) TCAR can not
understand the intent of the utterance, (iv) TCAR expresses
that it is incapable of performing the task. We record a total
of 126 sessions for 12 participants (m=10.5, sd=6.1). In total,
the participants use 261 utterances (m=21.8, sd=11.5) with
an average of 2.07 utterances per session (sd=1.78). Out of
the 12 participants, 7 of them ask unrelated questions (having
a wh_general intent) in their first sessions. The participants
ask a total of 12 questions (38.7%) out of the 31 first-session
utterances. This supports our hypothesis that initially TCAR
is being perceived as a question-answering dialogue agent.

The task understanding model of TCAR is subjectively
evaluated by recording the number of tasks provided by
participants and the corresponding number of successful plan
executions. Out of 113 given tasks, a total of 85 plans are
generated and executed in simulation, which results in an
accuracy of 75.2%. We also notice that for 38 out of the
85 successful tasks (44.7%), TCAR needs to ask further
questions to elicit missing information and to perform task
disambiguation. This evidence indicates that natural language
instructions are often incomplete and ambiguous, which
require further questions to be fully understood.

For the task disambiguation dialogues of successful exe-
cutions, TCAR asks an average of 2.3 questions (sd=1.06)
and for the tasks beyond its capability, TCAR has to ask
about all the five tasks. We also measure the amount of
time a participant spent to give an answer after a question is
asked by TCAR. We find that for the cases of successful task
execution of the first task instruction, participants spend an
average of 38.3 seconds (sd=33.1). For subsequent tasks by
the same participant, they spend 13.6 seconds (sd=29.05)
on average per questions. This is an indication that the
participants learn to interact more effectively from their
dialogue experiences with TCAR.

We also ask the participants to fill up a questionnaire about
their experience with TCAR and to provide suggestion to
improve the interaction quality. The participants are asked
to rate various aspects of the dialogue using a Likert scale.
The aspects and the recorded ratings are shown in Fig. [f
The ratings show that the participants mostly understand the
environment (Q7). Most of the participants understand the
questions TCAR asked (Q2) and also the answers TCAR
has provided (Q3). Many of them have felt that TCAR can
not understand many of their questions (Q4). One reason
for this is the participants are not aware of the agent’s
capabilities and they perceive it as a question-answering
agent, leading to many irrelevant questions that are not
properly captured by the list of intents recognized by TCAR.
Also, many participants have suggested that TCAR should
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Fig. 6: User experience on different aspects of the interaction.

list down its capabilities before starting the dialogue. Even
so, the results indicate that understanding user utterances
is the most important and also a very challenging part for
the development of a robotic conversational system. Some
of the participants have felt that TCAR understands the
answers they have given (Q5), while a similar percentage
of participants have felt otherwise.

VI. CONCLUSIONS

Providing task instructions to a cohabitant robot through
natural conversation adds to the usability and acceptability
of the robot, especially for a non-expert user. We present
a conversational agent for robots that understands tasks
that are specified in natural language. The agent is also
capable of guiding a novice user to specify tasks more
effectively through a meaningful conversation. We propose
several dialogue strategies employed in the conversational
agent to understand novel or ambiguous instructions and to
seek help by asking minimal questions. In the future, we
would like to include gesture interpretation for multi-modal
instruction understanding and also evaluate our system with
people from diverse cultural and educational backgrounds.
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