Abstract—With the advent of Industry 4.0 era, employing a team of robots within a factory floor or a warehouse is pretty prevalent today as robots can perform a known task with higher accuracy and efficiency if its capability permits. Efficiency and throughput of such a setup depend on careful task assignment and scheduling, which further depend on utility calculation. Though there exists a number of techniques to perform efficient task allocation, they assume the utility values are available and static. They neither consider all the relevant parameters nor the dynamic changes that may occur during task execution. Moreover, methods of automating such dynamic utility calculation (both at the start and at runtime) based on knowledge and semantics are not present and this is a hindrance to building a fully automated robotic workforce. In this article, we explore an avenue of semantic-based dynamic utility calculation and showcase its application for a use-case.

I. INTRODUCTION

Mobile robots are a convenient tool to perform a set of tasks efficiently with minimal human intervention. Deploying a team of robots is often beneficial as opposed to a single robot [1]. Among others, efficiency of such a collaborative exploration depends largely on efficient multi-robot task allocation (MRTA), which has gained significant research attention due to its diverse range of applications [2], [3], [4]. The objective is to allocate tasks to the agents either instantaneously or time-extended fashion such that the overall goal can be achieved with minimal completion cost and/or time. A precursor to the task assignment with such an objective is to perform utility calculation. It generally refers to accurately estimating the cost of a particular task, if performed by a particular robot. This cost estimation helps to schedule and assign the tasks among the fleet of robots such that the overall cost to perform all the tasks can be minimized.

Industry 4.0 [5] standard proposes autonomy of robotic agents that are capable of coordinating among themselves, do inferencing, and take a decision on their own with minimal human intervention. Thus integrating knowledge bases to explore the relations between the concepts involved in different domains like robots, tasks, capabilities, environment, objects etc. is one of the prime focus of the research communities [6] [7]. Utility calculation at runtime is one step to that direction.

Related work. Gerkey et al. provides a formal analysis and taxonomy of all types of task allocation scenarios that can occur in a multi-robot system [8]. They provide the basic requirement of why optimization on utility is required while doing task allocation. For each of the different task allocation category, they present an optimization process based on utility. But it lacks the details about the list of parameters and methodology to calculate utility for a given set of task. Nnaji et al. [9] outlined a detailed methodology for a robot’s utility calculation that is based on the utility theory. To do so, all features of a robotic device that are related to such a task must be identified and evaluated relative to one another. However, the scope of this method is restricted to the selection of a robot while purchasing it for a particular purpose. It is neither suitable for MRTA setup nor for a dynamic task allocation scenario. A similar approach is also proposed by Parkan et al. [10] for robot selection. Again, the utility calculation is neither suitable for MRTA setup nor it is supported by any knowledge-base to facilitate automation. Settembre et al. [11] has detailed a search and rescue scenario and outlined the importance of utility calculation. However, their method lacks the required details to actually calculate the utility values.

Challenges. If all the robots are homogeneous and the cost of performing a task is equivalent to the time required to complete the task, the utility calculation becomes trivial. However, in practice, it is a far more complex process and needs to consider a number of factors such as:

- Parameters specific to robot, environment, target object, etc., and their inter-relations need to be considered by a robot to estimate the cost of a task. As the existing task allocation algorithms assume a single utility value for a robot-task pair, combining heterogeneous parameters makes it a difficult task.
- Scenarios like “search and rescue” where manual control or supervision may not be possible in real time, robots may have to take a decision by themselves at runtime. For such cases, utility calculation mechanism should not be a hindrance towards automation.
- Usually manufacturers follow their own nomenclature and units for robotic specifications. Only domain experts can identify semantically similar terms and do necessary conversions. Presently, there is no standard mechanism to store and describe these data in a uniform machine-readable format such that semantics of those data can be interpreted by the robots.
• Even if the robots are of the same type, value of certain parameters vary over time, e.g., battery state, current location, remaining weight carrying capacity (the robot may be already carrying some objects), etc. These need to be considered in runtime during dynamic task allocation.

Contributions. In this paper, we tackle most of these challenges. Specifically, our contributions are twofold. **First,** we provide a comprehensive tool/guideline to calculate utility for heterogeneous (as well as homogeneous) team of robots under a dynamic scenario. **Second,** we introduce semantic-enabled automated utility calculation and task allocation technique based on knowledge repositories aka ontologies.

II. Overview of Utility Calculation

The goal of utility calculation for MRTA is to provide the necessary and sufficient information to the task allocator such that it can allocate the tasks with minimum execution cost for the system. Fig. 1 shows a high-level system overview for utility calculation. The task allocator is assigned a set of given/discovered tasks with the relevant description. For each task, the task allocator consults the knowledge base to find the utility values for all the available robots. The three major components of the knowledge base that are required for utility calculation are shown in Fig. 1. Each of these components is represented using an ontology and an instance of these ontologies are populated with the relevant data for a particular environment. Given a task and a robot, the knowledge base provides all the relevant parameters and interdependencies for the robot-task pair. Then it combines these heterogeneous parameters to calculate a single utility value for the pair. In this process, it also filters the capable robots, i.e., the robots that are capable to perform a particular task. The utility values are stored in a matrix as a robot-task pair. Finally, this matrix is given as an input to a suitable task allocation algorithm.

III. Utility Calculation Modeling

Suppose a multi-robot system consists of a fleet of \(k \) robots and currently there are \(n \) tasks to be performed by them. The utility calculator generates a \(k \times n \) matrix for each robot-task pair and passes it on to the task assignment algorithm. For robot \(i \), the utility (cost) to perform task \(j \) can be calculated using the following equation,

\[
\begin{align*}
 u_{ij} &= t_{ij}^{\text{motion}} + t_{ij}^{\text{act}} + t_{ij}^{\text{rec}},
\end{align*}
\]

where \(t_{ij}^{\text{motion}} \), \(t_{ij}^{\text{act}} \), and \(t_{ij}^{\text{rec}} \) are the total travel time for robot \(i \), actuation time for the task \(j \) by robot \(i \), and the recharge time for robot \(i \), respectively. If the robot’s battery is replaceable, \(t_{ij}^{\text{rec}} \) can be ignored. Now, \(t_{ij}^{\text{motion}} \) depends on two parameters as shown in Eq. 2 – free path motion time (\(t_{ij}^{\text{free}} \)) and turning time (\(t_{ij}^{\text{turn}} \)), where \(t_{ij}^{\text{free}} \) depends on the travel distance \((d_{ij}^{\text{total}}) \) and speed of the robot \((v_i) \) and \(t_{ij}^{\text{turn}} \) depends on average turning time (\(t_{ij}^{\text{turn}} \)) and number of turns \((n_i^{\text{turn}}) \) on the robot’s path. In case of an UAV, there is no turning time; rather it is the ascending/descending time to reach the desired flight level.

\[
\begin{align*}
 t_{ij}^{\text{motion}} &= t_{ij}^{\text{free}} + t_{ij}^{\text{turn}},
 \quad t_{ij}^{\text{free}} = d_{ij}^{\text{total}}/v_i, \\
 t_{ij}^{\text{turn}} &= t_{ij}^{\text{turn}} + n_i^{\text{turn}}.
\end{align*}
\]

\(t_{ij}^{\text{rec}} \) is recharge time for the equivalent amount of energy spent by the robot \((e_{ij}) \) to perform the task (Eq. 3).

\[
\begin{align*}
 t_{ij}^{\text{rec}} &= \frac{e_{ij}}{e_i} * t_{ij}^{\text{cap}}.
\end{align*}
\]

Now, \(e_{ij} \) depends on different energy consuming activities – motion, sensing, actuation, load carrying, computation, and communication. These parameters are calculated based on the respective energy consumption rate \((p_i) \) and the corresponding time for each of these activities.

\[
\begin{align*}
 e_{ij} &= e_{ij}^{\text{motion}} + e_{ij}^{\text{sense}} + e_{ij}^{\text{act}} + e_{ij}^{\text{load}} + e_{ij}^{\text{comp}} + e_{ij}^{\text{comm}},
\end{align*}
\]

where,

\[
\begin{align*}
 e_{ij}^{\text{motion}} &= p_i^{\text{motion}} * t_{ij}^{\text{motion}},
 \quad e_{ij}^{\text{sense}} = p_i^{\text{sense}} * t_{ij}^{\text{motion}}, \\
 e_{ij}^{\text{act}} &= p_i^{\text{act}} * t_{ij}^{\text{act}}, \\
 e_{ij}^{\text{load}} &= p_i^{\text{load}} * t_{ij}^{\text{load}}, \\
 e_{ij}^{\text{comp}} &= p_i^{\text{comp}} * (t_{ij}^{\text{motion}} + t_{ij}^{\text{act}}), \\
 e_{ij}^{\text{comm}} &= p_i^{\text{comm}} * (t_{ij}^{\text{motion}} + t_{ij}^{\text{act}}).
\end{align*}
\]

IV. Semantic Knowledge Representation

In order to complete a broad set of tasks on their own, a team of robots requires the domain knowledge available either locally or in cloud in some machine-readable and machine-interpretable format. Relevant concepts from domains like environment, task, robot capabilities, robot components, target objects, dynamic values of robot parameters, etc., and their inter-relation, dependencies, constraints are needed to be captured in a structured knowledge model (i.e., ontology) via a robot-interpretable language such as OWL/RDF [12], [13], [14]. However, we limit our discussion in this paper on the use of knowledge base in utility calculation and task allocation only.

Robotic tasks like picking, placing, moving, lifting, surveying, etc., from different domains, depends on certain parameters like weight of the target object, the location of the target, the size of the area under surveillance, etc. However, not all tasks involve all the parameters that are required for utility calculation. For example, surveying an area does not need weight of the object while picking task
does not involve size of an area. For the first level of automation, the robots need to know the required parameters for a given task. Thus, for a global set of tasks say, \{T_1, T_2, T_3, T_4,...,T_n\} and a global set of parameters say, \{P_1, P_2, P_3, P_4,...,P_m\}, there has to be a well defined one-to-many mapping between elements of task set and parameter set. The knowledge base needs to capture such task vs. parameter dependencies so that robots can query to know which parameters to consider against a given task. This is the first role of domain knowledge base for automated robotic utility calculation.

These parameters often depend on features of robots, environment, and other domain-specific parameters. To elaborate, let us take an example of a warehouse specific task like “Pick a box of apple and place it at storage rack no. 3 in aisle no. 4”. Now, for utility calculation as per Eq. 1, one need information like: travel time to reach the box, time required to pick up the box, travel time to the storage rack, energy spent during these travelling/picking/storing etc. But these data are not directly calculable as they are dependent on multiple sets of sub-parameters and their inter-relations. For example, the travel time depends upon the distance between the box and the current location of the robot, running cost of the path-planning algorithm, number of turns to be taken during navigation, the speed of the mobile robot, etc. Similarly, picking up the box depends upon weight and size of the box, fragility level of the box, computation cost for box identification, computation cost for pickup actuation, the energy required for gripping/picking, etc. Finally, to bring the picked-up box to its destination, various parameters like, height of rack no. 3, distance between aisle no. 4 and the box’s current location, present load carrying capacity and battery level of the robot, battery recharge time/battery swap time, etc. are also need to be considered.

These basic parameters are not always specified in a uniform fashion by different manufacturers. For example, speed of a mobile robot is mentioned in miles per hour (MPH) for some robots while meter per second (m/s) is used for others. Moreover, some manufacturers mention number of wheel rotations per second instead of specifying speed. Thus one needs wheel diameter to calculate the speed in such cases. For a heterogeneous set of robots, these issues need to be solved semantically for uniform comparison and utility calculation.
In this paper, we have identified practical gaps in utility-based task allocation mechanism for the multi-robot systems and proposed a semantic knowledge-based framework for doing the same. This leads to a fully autonomous MRTA system. We demonstrate its use via a “pick & place” task, specific to a warehouse. In future, we plan to extend this framework to make a fully autonomous, semantic enabled, self-decision making system capable of completing any task.

V. IMPLEMENTATION AND RESULTS

We have created the ontology in OWL/RDF using Protege. The ontology is modular i.e., the concepts and relationships around the robotic entity are captured in robot.owl while environment.owl captures the same for the environment where the task is being executed. Some relevant concepts, relations, and individuals are shown in Fig. 2. To interact with the ontology and related database, an API interface has been created based on RDFLib (https://github.com/RDFLib/rdflib). Some example APIs are: findRequiredHWCapability(task), findObjectDetails(object), getRackPos(rack#), retrieveRobotDetails(task, robot) etc.

Fig. 3 shows sample output of the API retrieveRobotDetails(task T1, robot R1), which provides parameter values of the Robot-1 (R1) with respect to the task T1. One can get similar details of other robots (say, Robot-2 and Robot-3) for the same task and can calculate utility for each of such robots using those values (detailed in Table I). The relevant parameter values are derived from [15]. Note energy required for Robot-3 is incalculable as its actuation energy is undefined. This is because it does not have the picker arm and hence do not have the capability to pick the box.

Similarly, Robot-2 needs 11.3 KJ to complete the task, which is higher than its residue energy (5 KJ). Hence, Robot-1 is the only recommended one for the task.

VI. CONCLUSIONS

In this paper, we have identified practical gaps in utility-based task allocation mechanism for the multi-robot systems and proposed a semantic knowledge-based framework for doing the same. This leads to a fully autonomous MRTA system. We demonstrate its use via a “pick & place” task, specific to a warehouse. In future, we plan to extend this framework to make a fully autonomous, semantic enabled, self-decision making system capable of completing any task.

REFERENCES

TABLE I

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Robot-1</th>
<th>Robot-2</th>
<th>Robot-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (m)</td>
<td>100</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>No. of turns</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Average velocity (m/s)</td>
<td>0.65</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>Turning time for 3.14 rad (s)</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Sense, compute & motion energy (without load) (J/s)</td>
<td>21.6</td>
<td>21.9</td>
<td>22.3</td>
</tr>
<tr>
<td>Sense, compute & motion energy (with load of 1Kg) (J/s)</td>
<td>23.6</td>
<td>24.7</td>
<td>25.1</td>
</tr>
<tr>
<td>Actuation energy (J/s)</td>
<td>1.2</td>
<td>1.05</td>
<td>∞</td>
</tr>
<tr>
<td>Communication energy (J/s)</td>
<td>2.3</td>
<td>2.25</td>
<td>2.1</td>
</tr>
<tr>
<td>Energy Required/Residue (KJ)</td>
<td>8.3/10</td>
<td>11.25/7</td>
<td>∞/9</td>
</tr>
<tr>
<td>Recommendation</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>